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Abstract: Kernel Logistic Regression (KLR) is a powerful classification technique that has been applied successfully in many 

classification problems. However, it is often not found in large-scale data classification problems and this is mainly because it 

is computationally expensive. In this paper, we present a new KLR algorithm based on Truncated Regularized Iteratively Re-

weighted Least Squares(TR-IRLS) algorithm to obtain sparse large-scale data classification in short evolution time. This new 

algorithm is called Nystrom Truncated Kernel Logistic Regression (NTR-KLR). The performance achieved using NTR-KLR 

algorithm is comparable to that of Support Vector Machines (SVMs) methods. The advantage is NTR-KLR can yield 

probabilistic outputs and its extension to the multi class case is well defined. In addition, its computational complexity is lower 

than that of SVMs methods and it is easy to implement.  
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1. Introduction 

In many data mining applications in a wide range of 
fields, including social science, bioinformatics, etc., 
there is a need for large-scale data classification 
algorithm in order to derive useful information out of 
these data. There are a variety of supervised learning 
techniques devised for the purpose of classification. 
Among these techniques are the kernel based methods 
such as Support Vector Machines (SVMs) and Kernel 
Logistic Regression (KLR). Based on recent advances 
in statistical learning theory, SVMs deliver state of the 
art performance in real world applications [3, 7]; its 
training algorithm builds a model that assigns new 
examples into one category or the other to reach 
classification of the input variable. The SVMs model is 
a representation of the examples as points in space, 
mapped so that, the examples of the separate categories 
are divided by a clear gap that is as wide as possible. 
The SVM method requires solving a constrained 
quadratic optimization problem with a time complexity 
of O(n

3
) where n is the number of training instances. 

Iterative chunking method, which divides the overall 
problem into small active training set, was designed to 
implement SVMs in large scale data sets. The extreme 
form of chunking is the Sequential Minimal 
Optimization (SMO) [19]. LIBSVM, which is the state 
of the art toolbox [2], uses SMO solver described in [4]. 
The problem of LIBSVM is that sometimes the training 
time for large-scale data sets is unrealistic. 

On the other hand, KLR has also proven to be a 
powerful classifier [1, 12, 23]. KLR is a kernel version 
of logistic regression, which is a well-known 
classification method in the field of statistical learning. 
In KLR, the input vector is mapped to a high- 
dimensional space (feature space). Unlike SVMs, KLR  

includes the probabilities of occurrences as a natural 
extension. More over KLR can be extended to handle 
multi class classification problems and it requires 
solving only unconstrained optimization problem [8, 
14]. KLR is fitted using maximum likelihood, it also 
has time complexity of O(n

3
) and is often not found on 

predicting large-scale data due to its computational 
demand [14]. 

Iteratively Re-weighted least Squares (IRLS) that 

implement newton-raphson method is applied 

effectively for finding the maximum likelihood 

estimates of a LR model [6]. Komarek and Moore [16] 

modified IRLS that mimics truncated Newton’s 

methods and added regularization. They named their 

algorithm Truncated Regularized IRLS (TR-IRLS), 

and they show that it can be effectively implemented 

to classify large scale data using LR and that it can 

outperform the SVMs algorithm. Later on, another 

type of truncated newton and truncated newton 

interior point methods [15] called trust region 

newton’s method [17] is applied for large-scale LR 

problems. However, LR linearity may be an obstacle 

to handling highly nonlinearly separable data sets [16]. 

Maalouf et al. [18] combine the speed of the TR-

IRLS algorithm with the accuracy generated by the 

use of kernels for solving nonlinear problems. Their 

kernel version of the TR-IRLS algorithm, which they 

named Truncated Regularized KLR (TR-KLR) is just 

as easy to implement and requires solving only an 

unconstrained regularized optimization problem. It can 

be applied successfully for small to medium size data 

classification problems. However, for large scale 

problems TR-KLR still becomes computationally 

expensive. 
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In this paper, we present a new practical and scalable 

algorithm based on TR-KLR algorithm to be used for 

large scale data classification. This new algorithm is 

called Nystrom Truncated KLR (NTR-KLR). In NTR-

KLR, we adopt eigen-decomposition of the kernel 

matrix into eigenvalues/eigenvectors matrices and then 

select the first p<<n eigenvalues/eigenvectors form 

these matrices to approximate the kernel matrix. We 

used nystrom method to reduce the computation cost of 

computing the eigen-decomposition by selecting small 

sample of size m<<n from the feature’s matrix using k-

means clustering with outlier removal. The 

performance achieved using the proposed NTR-KLR is 

comparable to that of SVMs methods. The advantage is 

that NTR-KLR can yield probabilistic outputs and it 

can be extended to handle multi class classification. In 

addition its computational complexity is lower than that 

of SVMs methods and it is easy to implement.  

2. Material and Methods 

2.1. Kernel Logistic Regression 

KLR is the kernel version of logistic regression, which 

is a well-known statistical model for classification. 

Unlike LR, KLR enables the classification of linearly 

non-separable problems by transferring the input 

features to a higher dimensional space, via the kernel 

trick. The kernel is a transformation function that must 

satisfy mercer’s necessary and sufficient conditions, 

which state that  a kernel function must be expressed as 

an inner product and must be positive semi-definite. 

The logit link function of the KLR can be written as 

follows [18]: 

                                 ( )i ixη ϕ β=  

Where β is the LR parameter, The transformation ϕ(.) is 

often unknown but the dot product in the feature space 

can be expressed in terms of the input vectors through 

the kernel function so, the log it link function can be 

given as follows [18]: 

                                  
i ikη α=  

Where ki is the ith row in the kernel matrix and α is the 

KLR parameters. Each row ki is modelled with its 

corresponding class as follows: 
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The penalized log-likelihood can be rewritten with 

respect to α as: 
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Maximizing the log-likelihood above is equivalent to 

minimizing the deviance [9], which is the negative of 

the log-likelihood and is given as follows: 

                            ( ) 2 ( )DEV lnα α= −  

The KLR can be fitted by the solution of a convex 
optimization problem, which can be solved efficiently 
via the algorithm IRLS. In IRLS, each iteration finds 
the Weighted Least Squares (WLS) estimates for a 
given set of weights, which are used to construct a 
new set of weights [16]. The WLS problem for the 
KLR in each iteration is given as follows: 

                  ( 1) ( )
( )

T c T c
ˆK WK K K Wzδ α

+
+ =  

Where W is the weight matrix, K is the kernel matrix, 

and z is the vector of adjusted response, which is given 

as follows: 

                        ( ) ( )
( )

c c
ˆz K V y pα= + −

-1  

Maher et al. [18] applied an algorithm based on TR-

IRLS, which they called TR-KLR. In TR-KLR the 

linear system in Equation 6 for each iteration can be 

solved using the Conjugate Gradient (CG) method 

after specifying an initial estimate )0(α̂ . To avoid the 

long computations that CG may suffer from, a limit to 

the number of CG iterations can be placed, thus 

creating an approximate or truncated newton direction 

[18]. The TR-KLR is suitable for small to medium 

size data sets, but for large-scale data e.g., n>10,000 it 

is computationally expensive, because the linear 

system in Equation 6 must be solved for each 

Newton’s iteration. Also, storing the kernel matrix for 

such large data is prohibitive on modern workstations 

(although, this boundary can be pushed further by 

using high-performance computers).  

2.2. The NTR-KLR Algorithm 

To extend the usability of TR-KLR for large data sets, 

we can adopt eigen-decomposition of the kernel 

matrix K in the form. 

                              T

n n n n nK U UΛ× =                               

Where ᴧn=diag(λi) and λ1≥ λ2≥ ...≥ λn≥ 0 are the 

eigenvalues of the matrix K, Un is the matrix of the 

eigenvectors that correspond to the eigenvalues and n 

is the number of the data points. We can select the first 

p eigenvectors and eigenvalues form the matrices U 

and ᴧ respectively, where p<<n, to approximate the 

kernel matrix. This approximation is motivated by it is 

widely usage e.g., principal component analysis [21]. 

Using this approximation can reduce the 

computational cost drastically. However, computing 

the eigen decomposition itself is also computationally 

expensive. To reduce the computational cost of 

computing the eigen decomposition we can select 

small sample of size m<<n from the features matrix 

[20] to construct the following eigen problem: 

                          T

m m m m mK U UΛ× =  

Now, we can extend the eigenvalues/eigenvectors of 

the Km×m to the all points using the following nystrom 

approximation [21]: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Where ( )m
iλ  and ( )m

iu are the i
th

 eigenvalue/ eigenvector 
of the m×m eigenproblem and Kn×m is the appropriate 
n×m sub matrix of K. The quality of approximation for 
the kernel matrix K can be considered at the m points 
used for eigen decomposition and the other n-m points. 
In general we have a choice of how many of the 
approximate eigenvalues/vectors to include in our 
approximation of K; choosing the first p we get: 
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By using nystrom method and setting p=m it is easy to 

show that the approximation Kɶ for the kernel matrix is 

as follows [21]. 

                          1

n m m m m nK K K K
−

× × ×=ɶ                       

By using the approximation above, we don’t need to 
compute and store the whole kernel matrix in the 
memory but only a m by n portion of it which can help 
in utilizing the memory usage. The selected m<<n from 
the features matrix should minimize the mean squares 
error or in another words it should contain as much 
information as possible. Because the nystrom low-rank 
approximation depends crucially on the quantization 
error induced by encoding the sample set with 
landmark points, one can simply use the clusters 
obtained with (k-means algorithm) as a selected vectors 
[13, 24]. In another words the k-means clustering 
algorithm can be used to select m vectors from the 
features matrix using the clustering approach. k-means 
clustering algorithm is susceptible to outliers, these 
outliers can affect the quality of information contained 
in the m selected vectors and in this case k-means 
clustering algorithm with outlier’s removal can contain 
as much information as possible and give high 
classification accuracy. The computational time of the 
KLR using nystrom approach scales to O(nm

2
) [21]. 

The following algorithm represents the NTR-KLR 
algorithm, which extend the usability of TR-KLR to 
large data sets. The algorithm terminates when the 
relative difference of deviance between two 
consecutive iterations is not greater than a specified 
threshold. 

Algorithm 1: NTR-KLR MLE using IRLS  

Input: X, y  

Result: α̂  

begin 

  Select m vectors from X using k-means clustering to construct   

  the eigen problem in Equation 9. 

  Extend the eigenvectors/values to all points as in Equations 9. 

  Approximate the kernel matrix Kɶ  as in Equation 11. 

     Determine initial estimate for 
(0 )α̂ . 

     c=0 

     While 
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              End for 
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              c=c+1 

     End while 

End 

Algorithm 2:  Linear CG for solving the linear system AX=b 

Input: A= ( )K V K Kδ+ɶ ɶ ɶ , b= ( )T c
K V zɶ , (0)α̂  

Result: α̂  

begin 

                      (0 ) (0 )ˆr b Aα= −  

                               c=0 

   while 2
( 1 )c
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>  and c≤ CGmax iteration 

           If c=0 then 

                      ( )
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  End while 

End 

2.3. Data Sets 

The benchmark datasets that are used to measure the 
performance of NTR-KLR were eight datasets. All 
these datasets contain more the 10,000 instance. We 
consider only binary classification, because it 
facilitates the use of SVM and allows us to compare it 
fairly with NTR-KLR. Adults, ijcnn1 and w6a were 
originally binary class data sets, but shuttle, connect-4, 
nursery, seismic and protein were multi-class data 
sets; we convert them to binary class, so as to classify 
one class against the rest of the classes. These sets are 
downloaded from the LIBSVM datasets, and the UCI 
machine learning repository. The number of features, 
and instances, for each dataset is shown in Table 1.  

Table 1. The large-scale data sets used to measure the performance 
of NTR-KLR. 

Data Set Instances Features 

Adults (a9a) 32561 123 

ijcnn1 49990 22 

W6a 17188 300 

Shuttle 43500 9 

Connect-4 67557 42 

Nursery 12960 8 

Seismic 78823 51 

Protein 17766 357 

To evaluate the performance of NTR-KLR algorithm 

on small size data sets and to compare it with TR-KLR 

and SVM algorithms we used the data sets that are 

shown in Table 2. These datasets are also downloaded 

(11) 

(10) 

(12) 
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from the LIBSVM data and the UCI machine learning 

repository.  

Table 2. The small-size data sets used to measure the performance 

of NTR-KLR. 

Data Set Instances Features 

Heart 270 13 

Liver 345 6 

Survival 306 3 

Australian 690 14 

Diabetes 768 8 

Ionosphere 351 34 

2.4. Performance Measures 

The quality of prediction is evaluated using the 

following measures:  Accuracy, Matthews Correlation 

Coefficient (MCC), precision, sensitivity, specificity, 

and the ROC curve. These measures are consistent 

measures that are used to evaluate machine learning 

methods. Let True Positives (TP) be the number of 

correctly classified instances as 1, True Negatives (TN) 

be the number of correctly classified instances as 0, 

False Positives (FP) be the number of instances 

incorrectly classified as 1 and False Negatives (FN) be 

the number of instances incorrectly classified as 0. The 

prediction accuracy, which is defined as the percentage 

of correctly classified residues is calculated as follows: 

                      TP TN
accuracy

TP TN FP FN

+
=

+ + +
 

The MCC can be calculated as: 

        
( ) ( ) ( ) ( )

TP*TN FP*FN
MCC

TP FP * TP FN * TN FP * TN FN

−
=

+ + + +

        

The probability of correct prediction or precision, it is 

also called Predicted Positive Value (PPV) and it is 

given as follows: 

                            TP
Precision

TP FP
=

+

                           

Sensitivity or coverage is the percentage of correctly 

predicted instances among the observed instances or it 

is the fraction of the total positive samples that are 

correctly predicted and it is given as follows: 

                           
TP

Sensitivity
TP FN

=
+

 

Specificity is the fraction of total negative samples that 

are correctly predicted. 

                          
TN

Specificity
TN FP

=
+

 

The classification results from the most positive 

classification to the most negative classification are 

plotted using the ROC curve plots, it is considered to be 

a comprehensive evaluation of classifier performance. 

From the ROC curve we can obtain the area under 

curve AUC. A high AUC value indicates good 

classification performance.  

We have added another three measures, which have 
been used in medical diagnosis to analyse tests [11], 
these measures are Youden’s index, Likelihoods 
measure and the diagnostic odds ratio. These measures 
will bring in new characteristics, which include the 
confirmation capability with respect to classes, that is, 
the estimation of the probability of the correct 
predictions of positive and negative labels; and the 
ability to avoid failure, namely, the estimation of the 
complement of the probability of failure. Furthermore, 
these measures are easily comparable. 
   Youden’s index γ [22] evaluates the algorithm’s 
ability to avoid failure or the ability of an algorithm to 
correctly labels examples. It equally weights the 
algorithm’s performance on positive and negative 
examples: 

                    1sensitivity specificityγ= + −  

A higher value of γ indicates better ability to avoid 

failure.  

Likelihoods measure, it is a measure that combines 

both sensitivity and specificity and can evaluate 

classifier’s performance to a finer degree with respect 

to both classes. It is calculated with respect to the 

following two measures.  

           
1

sensitivity

specificity
ρ+ =

−
,

1 sensitivity

specificity
ρ

−
− =  

A higher positive likelihood and a lower negative 

likelihood mean better performance on positive and 

negative classes respectively. The relation between the 

likelihood of two algorithms A and B establishes 

which algorithm is preferable and in which situation. 

This relationship is given as follows: 

ρ+
A
>ρ+

B and ρ-
A
<ρ-

B implies that A is superior overall; 

ρ+
A
<ρ+

B and ρ-
A
<ρ-

B implies A is superior for 

confirmation of negative examples; ρ+
A
>ρ+

B and       

ρ-
A
>ρ-

B implies A is superior for confirmation of 

positive examples; ρ+
A
<ρ+

B and ρ-
A
>ρ-

B implies A is 

inferior overall. 

The Diagnostic Odds Ratio (DOR) [5] is also a 

global performance measure. It has been used as a 

measure of diagnostic discrimination in medicine to 

test the ratio of the odds of positivity in disease 

relative to the odds of positivity in the non-diseased. 

DOR can also be used in machine learning to compare 

algorithms performances. It is calculated as follows: 

                 
/(1 )

(1 )/

sensitivity sensitivity
DOR

specificity specificity

−
=

−
 

The value of a DOR ranges from 0 to infinity, with 
higher values indicating better discriminatory test 
performance. A value of 1 means that the test does not 
discriminate between two algorithms. Values lower 
than 1 point to improper test interpretation. The 
Wilcoxon signed ranks test, which is a non-parametric 
statistics is used for analysing the differences between 
NTR-KLR and LIBSVM algorithm over the 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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benchmark datasets. Wilcoxon signed ranks test ranks 
the differences in performances of two classifiers for 
each data set, ignoring the signs and compares the ranks 
for the positive and the negative differences. The 
differences are ranked according to their absolute 
values; average ranks are assigned in case of ties. Let 
R

+
 be the sum of ranks for the data sets on which the 

second algorithm outperformed the first and R− the sum 
of ranks for the opposite. Ranks of di=0 are split evenly 
among the sums; if there is an odd number of them, one 
is ignored: 

                  
0 0

1
( ) ( )

2
i i

d d
i i

R rank d rank d
> =

+
∑ ∑= +  

                 
0 0

1
( ) ( )

2
i i

d d
i i

R rank d rank d
< =

−
∑ ∑= +  

Let T be the smaller of the sums, T= min(R
+
, R

−
). Most 

the statistical books include a table of exact critical 

values for T from 1 up to 25 degree of freedom (or 

sometimes more). For a larger number of data sets, the 

statistics: 

                       

1
( 1)
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1
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T N N

z

N N N
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Could be used, which is distributed approximately 
normally. With a=0.05, the null-hypothesis can be 
rejected if z is smaller than −1.96. 

3. Experimental Setup 

We compared the performance and computational time 

of NTR-KLR with the SVM method. To determine the 

optimal parameters for NTR-KLR, ten folds cross 

validation was performed on all the datasets. That is, 

these sets were randomly divided into ten subsets, each 

containing approximately equal number of instances. 

Nine of the ten subsets were merged together to form a 

training set that will be used to train the NTR-KLR 

method. The unused subset is used for testing. This 

process was repeated ten times to test the prediction 

result for each testing set. The best values were 

determined for each training set. The training set with 

its associated best values was used to construct the 

NTR-KLR model. For the SVM we used the grid 

search method, which is explained in [10] to tune its 

parameters. The following Radial Basis Function 

(RBF) is used as a kernel function for both the SVM 

and NTR-KLR. 

                       
2

2

1
( )

2( , )
i j

x x

i jK x x e σ
− −

=  

All of the datasets were scaled to values between 1 and 

0. All of the computations for NTR-KLR and SVM 

were carried out using MATLAB version 2009 a on a 3 

GB RAM computer. For the SVM method, we used 

LIBSVM toolbox [2] for MATLAB. For NTR-KLR the 

maximum number of newton raphson’s iterations is set 

to 50, while the maximum number of iteration for the 

CG is set to 200. 

4. Results 

It can be observed from Tables 3 and 4 that the MCC 
of NTE-KLR is noticeably better than that of SVM on 
ijcnn1 and shuttle datasets and it is slightly better than 
SVM on adults, nursery and seismic data sets. The 
MCC of SVM is better than NTR-KLR connect, w6a, 
and protein data sets. The accuracy of NTR-KLR is 
better than that of SVM on adult, ijcnn1, shuttle and 
nursery data sets and it is worse on connect, seismic, 
and protein  data sets. The differences in the accuracy 
on these data sets are not significant. The precision of 
NTR-KLR is noticeably better than SVM on ijcnn1 
and it is worse on protein data sets. The precision on 
the other data sets is almost the same. The sensitivity 
of the NTR-KLR is better than that of SVM on four 
out of eight data sets; it is the same in one data set and 
less that SVM in three data sets. 

Table 3. The performance results of the NTR-KLR. 

Data Set MCC Accuracy Precision Sensitivity Specificity AUC Uind Ρ + Ρ - DOR 

Adults 0.56 0.86 0.71 0.59 0.93 0.90 0.52 8.09 0.44 18.39 

Connect 0.41 0.77 0.82 0.87 0.52 0.81 0.39 1.81 0.25 7.28 

Ijcnn1 0.67 0.95 0.79 0.61 0.98 0.99 0.59 38.17 0.40 95.22 

Shuttle 0.99 0.99 0.99 0.99 0.99 0.99 0.99 159.74 0.001 269000 

Nursery 0.91 0.96 0.94 0.95 0.97 0.99 0.93 32.05 0.04 764.77 

W6a 0.70 0.98 0.90 0.56 0.99 0.93 0.55 188.28 0.44 188.28 

Seismic 0.59 0.85 0.70 0.67 0.91 0.92 0.58 7.69 0.37 21.055 

Protein 0.51 0.79 0.74 0.60 0.89 0.83 0.49 5.43 0.45 12.02 

Table 4. The performance results of the LIBSVM. 

Data Set MCC Accuracy Precision Sensitivity Specificity AUC Uind Ρ + Ρ - DOR 

Adult 0.55 0.85 0.72 0.57 0.93 0.88 0.50 8.42 0.46 18.41 

Connect 0.43 0.79 0.79 0.94 0.39 0.87 0.34 1.56 0.14 11.15 

Ijcnn1 0.32 0.91 0.69 0.22 0.98 0.99 0.21 49.32 0.79 59.06 

Shuttle 0.94 0.98 0.99 0.99 0.95 0.97 0.93 18.61 0.01 1341.7 

Nursery 0.90 0. 95 0. 93 0. 94 0. 96 0.99 0. 90 25.21 0.06 392.80 

W6a 0.74 0.98 0.90 0.61 0.99 0.95 0.61 242.08 0.39 624.97 

Seismic 0.58 0.86 0.71 0.63 0.92 0.89 0.56 8.19 0.38 20.614 

Protein 0.55 0.81 0.76 0.63 0.90 0.85 0.53 6.16 0.42 14.84 

The results also show that the specificity of NTR-

KLR is better than SVM on three data sets and it is the 

same on three data sets and it is worse only in two data 

sets. The AUC for NTR-KLR is better than SVM on 

three data sets, worse on three data sets and it is the 

same on the other two data sets. The results also show 

that the Youden’s index (Uind) of NTR-KLR is better 

that SVM in all the data sets except two, which means 

that NTR-KLR is better than SVM in avoiding the 

failure. This also shows that Youden’s index do not 

correlate with the standard measures namely accuracy 

and MCC, which it means that the ability to avoid 

failure differs from the ability of successful 

identification of the classification labels. According to 

the likelihood measure, NTR-KLR is superior overall 

on shuttle and nurssery data sets, while SVM is 

superior overall on w6a and protein data set. DOR 

favors NTR-KLR algorithm on ijcnn1, shuttle and 

nurssery, while it favors SVM only on w6a data set. 

The difference in DOR is not significant on the other 

datasets. In general the superiority of an algorithm is 

related to the way in which evaluation is measured. 

The above reported results depict that higher accuracy 

does not mean overall better performance of an 

(21) 

(22) 

(23) 
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algorithm. The same conclusion applies to every 

performance measure if it is considered separately from 

others. On the other hand, a combination of measures 

gives a balanced evaluation of the algorithm’s 

performance. To test the statistical difference between 

the two algorithm overall the various evaluation 

measures, we used wilcoxon signed rank test. Wilcoxon 

signed rank test will be appropriate for our data, 

because it does not assume that the data is homogenous, 

and normally distributed, also it will not be affected by 

the size of the data. The results of wilcoxon rank signed 

test with confidence interval 95% is shown in Table 5 

According to the results wilcoxon signed ranks test 

shows no significant difference between LIBSVM and 

NTR-KLR, since all the p values are larger than 0.025. 

This shows that NTR-KLR is as effective as SVM.  

Table 5. Wilcoxon signed-ranks test with confidence interval 95%. 

Measures Mcc Accuracy Precision Sensitivity Specificity Auc Uind Ρ + Ρ - Dor 

P-Value 0.64 0.61 0.61 0.22 0.34 0.91 0.18 0.58 1.00 0.67 

The 95% confidence level accuracies of NTR-KLR 
on the small size data sets and its comparison with TR-
KLR and SVM are shown in Table 6. It is clear that the 
classification accuracy of NTR-KLR for small size data 
is comparable to that of SVM and TR-KLR. The only 
thing is that the ratio of the selected vector m to the 
number of the data points n will be bigger, but this has 
no effect on the training time since, n is already small. 

Figures 1 and 2 show the ROC curves for adults and 
seismic data sets respectively. They were constructed 
using the average estimated probabilities. All of the 
figures show that the ROC curves for the NTR-KLT is 
higher than that of the SVM, but at the end of the curve 
they are almost the same. 

Figure 3 shows the execution time of NTR-KLR and 

SVMs in function of the number of instances. The input 

data used for the figure is from seismic dataset. It is 

clear that the execution time of SVM increases rapidly 

as the number of training instances increases, while the 

execution time of NTR-KLR increases slowly as the 

number of instances increases. 

Table 6. The 95% confidence level accuracies of NTR-KLR, TR-
KLR and SVM. 

Data set NTR-KLR TR-KLR SVM 

Lonosphere 92.6±2.2 93.7± 2.5 90.6 ±3.1 

Diabetes 79.8±2.1 78.0 ±2.9 77.2±3.0 

Survival 76.7±4.6 75.4±4.8 75.1±4.9 

Liver 69.8±3.5 70.1± 4.8 70.1±4.8 

Australian 85.5±2.7 86.1±3.4 85.5±2.3 

Heart 82.9±3.6 0.83.8±3.1 0.83.3v3.1 
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 Figure 1. ROC curve for adult data set. 
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Figure 2. ROC curve for seismic data set.    
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Figure 3. The execution time in a function of the number of 

instances for NTR-KLR and LIBSVM. 

5. Discussion 

Both of the NTR-KLR and LIBSVM perform well in 
all the data sets; the small differences between the 
NTR-KLR and LIBSVM results in these data sets 
were statistically not significant according to 
Wilcoxon signed-ranks test. To select between NTR-
KLR there are four main concerns, these concerns are: 
First the size of the data set which the classifier is 
processing, second the need for dealing with input 
examples of variable length, third the desire to have 
probabilistic outcomes and fourth the need to perform 
multiclass classification. When the dataset is very 
large, people neglect the last two concerns and 
concentrates on selecting classifier that deal with large 
datasets effectively. Since, LIBSVM is designed in a 
way that can handle large scale data sets it becomes 
the choice for most of the classification purpose. 
However, LIBSVM does not address the last two 
concerns directly. KLR is not used in large scale data 
sets classification although it provides elegant solution 
to the last two concerns, simply because it is 
inapplicable in such data sets. NTR-KLR extends the 
applicability of KLR to be used in large scale data 
sets. It obtains results that are comparable to the 
LIBSVM in both small and large scale datasets. This 
way NTR-KLR can address all of the aforementioned 
concerns, so it will be a good choice for the 
classification purpose. 

Selecting the number of vectors m from the features 

matrix using k-means clustering algorithm is an 

important task in NTR-KLR. A large m can yield high 

accuracy, but long evaluation time; whereas small m 

can yield short evaluation time but lower accuracy. To 

select the optimal value for m a cross validation can be 

used, by starting with relatively small m and adding 

more vectors to m until a point where adding more 

vectors does not improve the accuracy significantly 

reached.   

Source of the Curve  

−−−− SVM 

−−−− NTR-KLR 

Source of the Curve  

−−−− SVM 

−−−− NTR-KLR 
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6. Conclusions 

In this paper we have presented a new algorithm based 
on TR-KLR algorithm, which we called NTR-KLR. 
NTR-KLR utilizes nystrom method for approximating 
the eigenvalues and the eigenvectors of the Kernel 
matrix by selecting m<<n from the features matrix 
using k-means clustering algorithm. Then the first p 
eigenvectors from the kernel matrix are used to 
approximate the eigen decomposition. In this way it is 
not necessary to store the whole kernel matrix in the 
memory, but only a m×n portion of it. We also show 
that NTR-KLR achieves performance that can be 
compared with SVM when applied to large-scale 
datasets e.g., >10,000 using selected vectors of less 
than or only few hundred. The evaluation time of NTR-
KLR is by far less than that of SVM. Moreover, NTR-
KLR takes advantage of TR-KLR, which uses 
unconstrained optimization methods whose algorithms 
are less complex than those with constrained 
optimization methods such as SVM.  
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